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A solution of the Einstein-Maxwell equations is derived which represents a closed universe of topology 
SSXR, filled with gravitational and electromagnetic radiation. We confine attention to the lowest of the 
large number of possible modes of radiation in such a universe. This mode has maximum symmetry con
sistent with the existence of a vector field; the universe is homogeneous but not isotropic, and is therefore 
a generalization of one of the solutions discussed by Taub. I t is possible to solve explicitly for the metric 
coefficients. Some of the physical properties of the solution are discussed. 

I. INTRODUCTION 

IN 1951, A. H. Taub1 gave a two-parameter family 
of solutions to the sourceless Einstein equations 

(RpV—0) which are characterized by their symmetry 
under 0(3), the rotation group of the 3-sphere. Only 
later was it realized2"6 that for one region of the coordi
nates this solution describes a closed space evolving in 
time ("Taub universe") and that the analytic extension 
to other regions of the coordinates describes asymp
totically flat spaces ("outer NUT space"). Closed spaces 
without sources have sometimes been proposed as 
anti-Mach universes7; alternatively, we here adopt the 
view that the Taub universe is held together by its 
content of gravitational radiation, which is present in 
the lowest possible mode (maximum symmetry). In 
order better to understand such radiation in the Taub 
universe, we give a generalization of the Taub-NUT 
solution which allows for presence of electromagnetic 
radiation of the same maximum symmetry. 

To date the only well-known example of a universe 
held together by its radiation content is the Tolman 
universe. In this solution of Einstein's equations the 
wavelength X of the radiation is very small compared to 
the radius of the universe, and the radiation is dis
tributed over many modes. Therefore a statistical 
treatment of the radiation is appropriate, and the uni
verse may be assumed homogeneous and isotropic in 
the large. Thus the Tolman universe is a limiting case 
(X —» 0) of a large class of solutions in which the radia
tion is present in various modes of finite wavelength. 
The spectrum of possible wavelength modes for radia
tion in a spherical, or topologically spherical, universe 
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is discrete.8 The fewer modes excited, or the longer 
their wavelength, the less applicable becomes the ap
proximation of the Tolman universe and its assumption 
of homogeneity and isotropy. It is entirely conceivable 
that a universe be held together and curved into a closed 
space by a sufficiently strong excitation of a single 
radiation mode. The present paper investigates this case 
for the mode of longest possible wavelength. 

For vector fields (electromagnetic radiation) and 
tensor fields (gravitational radiation) the lowest mode 
corresponds to constant fields on spacelike hypersurfaces 
t=const, in this sense: Each point on a hypersurface 
can be mapped into every other point such that metric 
and field direction are preserved. Following Heckmann 
and Schiicking3 and the common usage in mathematics9 

we call such a universe homogeneous. However, at any 
particular point not all directions are equivalent—the 
universe is not isotropic. In Taub's solution and the 
generalization to be considered here only one direction 
at each point is distinguished so that an additional 
symmetry exists, namely, rotations about the dis
tinguished direction. Our task is to solve the sourceless 
Maxwell-Einstein equations in this homogeneous, non
isotropic universe. 

As an example of a homogeneous space, consider the 
unit 3-sphere #2+y2+j32+w2=l, described here im
bedded in Euclidean 4-space. A preferred direction is the 
continuous unit tangent vector field (y, —x,z, —w); a 
typical mapping showing the homogeneity moves every 
point a constant distance along the field lines of this 
vector field. One of the solutions given below has 
exactly this geometry at the time t=0, with the electro
magnetic field pointing along the preferred direction. 
The other solutions differ from this example only in this 
respect, that the 3-sphere t— const is distorted so that 
not only the electromagnetic field, but also the space 
geometry singles out a preferred direction. 

Since there is to be only one preferred direction in our 
solutions, both the E and H fields must point along this 
direction. They must therefore be parallel, and have 

8 For a spherical universe, see E. Schrodinger, Comment. Pont. 
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constant magnitude in space because of the homo
geneity. In Sec. II we confine attention to the response 
of such fields to an arbitrary variation of the metric 
in time. As in the Tolman universe, the field strengths 
increase as the universe contracts, and we obtain the 
adiabatic law for the variation in time of the energy 
density in a Taub space [Eq. (15)]. The Maxwell tensor 
due to parallel E and H fields corresponds to "positive 
pressure" in directions transverse to the fields, and 
"negative pressure" along the field direction. In analyz
ing the response of the geometry to the fields we should 
therefore expect a corresponding behavior of the metric 
coefficients, e.g., after the time of time-symmetry the 
universe should expand in the transverse directions, 
and contract in the longitudinal direction. Details and 
a discussion of this analysis follow in Sees. I l l and IV. 

II. ELECTROMAGNETIC FIELD IN A GIVEN 
HOMOGENEOUS GEOMETRY 

Let the spacelike invariant varieties under the homo
geneity transformations be surfaces t—constant. Since 
they are geodesically parallel we can choose time-
orthogonal geodesic coordinates such that the metric 
takes the form, 

ds2=-dt2+da2. (1) 

Here da2 is a homogeneous three-dimensional metric. 
It is useful to describe it in terms of an orthogonal 
triad, &Xi ay, crZ) which is to be invariant under homo
geneity transformations. Let vz point along the dis
tinguished direction, then 

d<j2=A2<r2+B2(<r2+<ry
2) . (2) 

Due to homogeneity, A and B are functions of / only. 
The invariance group of the Taub geometry has the 
structure1'3 0(3). The <r's are invariant differential 
forms and therefore satisfy10 

dcrz=axAay and cylically. (3) 

(In holonomic coordinates this metric could be written, 
e.g., as 

da2==A2(d^+cosed<p)2+B2(dd2+sm2dd<p2), 
0 ^ < 4 T T , O ^ 0 < T T , 0 ^ < 2 T T . ) (4) 

Since <JZ is the preferred direction, the E and H vectors 
must point along it. Therefore the Maxwell field has 
the form, written in the tetrad dt, <ry, <ry, <TZ, 

Ftz=—Fzt=EA ,-x 
Fxy^~Fyx=HB2 

and all other components vanish. Here the factors were 
chosen so that E and H are the fields measured in an 
orthonormal frame, 

a>°=sdt, u>l^BvXi a)2~Bay, us = Acrz. (6) 
10 See, for example, C. Chevalley, The Theory of Lie Groups 

(Princeton University Press, Princeton, New Jersey, 1946), 
pp. 152 ff. 

In Cartan's notation,11 then 

F^-EOPA rf+Hai1
 A W2

 m 

^-EAdtAaz+HB2<rxA<jy. 

Due to homogeneity, E and H are functions of t 
only, so that, for example, dE=Edt (here a dot denotes 
differentiation with respect to t). By using (7) and (3), 
one set of Maxwell's equations, 

| dF=0 (8) 

reduces to the single equation, 

d(HB2)/dt=-EA. (9) 

The other equations from this set are automatically 
fulfilled by our choice (7) of the form of F. For example, 
since the preferred direction az has the topogolgy of 
the vector field mentioned in the introduction and 
therefore points along closed geodesies, the equations 
divE=0 and divB=0 are automatically fulfilled. 

To evaluate the other Maxwell equations we need 
the dual *F, which follows immediately from (7): 

*F=#w°Aco3+£co1Aco2 

= HAdtA az+EB2*x Aay. ^ 

Thus the other set of Maxwell equations, d*F=0, give 

d(EB2)/dt=HA. (11) 

Introduce new measures for the fields and the time 
coordinate, 

E'^EB2 H'=HB2 

dt'=(A/B2)dt. (12) 

Then the Maxwell equations (9), (11) take the simple 
form 

dHf/dtr=-Ef dEf/dtf=Hf (13) 

with the solution 

Ef=<j> s i n / ' H'=<j> cost'. (14) 

Here <f> is a constant of integration which is related to 
the electromagnetic energy density in the orthonormal 
frame 

roo=| (£ 2 +^ 2 ) = *2 /2^4 . (15) 

Equation (14) is the complete solution for the fields 
in a given metric of the Taub type. Although only one 
constant of integration appears explicitly, another is 
contained in the arbitrary origin of /', which is left free 
by Eq. (12). The two constants of integration are de
termined, e.g., by the initial magnitudes of E and H. 

The analog of the adiabatic law for the electromag
netic energy in the Tolman universe, Too^ (radius of 
universe)-4, is given by Eq. (15). As in the Tolman 
case, Eq. (15) can be derived by a simple physical 

11 E. Cartan, Les systemes differentiels et lew applications geo-
metriques (Hermann et Cie., Paris, 1945); G. de Rham, Varietes 
differentiables (Hermann et Cie., Paris, 1955). 
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argument. For example, as A increases, work is being 
done on the fields, hence the total energy in the uni
verse increases as A; the total volume also increases as 
A, so that the energy density Too shows no dependence 
on A. The factor B~2 can be similarly explained. 

III. SOLUTION OF THE MAXWELL-EINSTEIN 
EQUATIONS 

We now turn to the Einstein equations for the case 
of sourceless electromagnetic radiation (T=—R=0), 

R^T,,. (16) 

Here the Maxwell stress-energy tensor 

should be expressed in terms of the solution for F found 
in Sec. I l l , and the resulting equations (16) solved for 
the metric coefficients A and B. For the case of parallel 
E and H fields pointing in the z direction, all off-
diagonal components of TM„ vanish, and the diagonal 
components can all be expressed in terms of To0, given 
b y E q . (15): 

To0=T/=-Tx
x=-Tyv. 

Similarly, due to the homogeneous form of the metric 
(2), the off-diagonal components of R^ vanish. More
over, since the x and y directions are equivalent, 
Rx

x=Ryv. Thus only three of the equations (16) are not 
automatically satisfied. I t is convenient to divide these 
into a set of two equations specifying the algebraic 
structure of Ruv, 

Ro°=R* R*x (17) 

(19) 

and an equation specifying the value of, say, RQ° : 

RQO— TOO. (18) 

Equation (17) can be solved without specifying E 
and H. The components of R/ are easily calculated6 

Ro°= 2d(B/B)/dt+2(B/B)2+d(A/A)/dt+ (A/A)2, 

Rz*=Ryy=d(B/B)/dt+2(B/B)2 

+ (AB/AB)+ (2B2-A2)/2B*, 

Rz*=d(A/A)/dt)+ {A/A)2+2{AB/AB)+ (A2/2B*). 

To solve the second equation (17), Rz
z== —Rx

x, intro
duce a new time coordinate, 

dt"~(A/2B0)dt, (20) 

where Bo—B{to) is the value of B at some fixed time to. 
The equation then takes the form 

d2B/dt"2=Bo2/Bs 

with the general solution 

B2~B,2+(t»-h")2. (21) 

Here BQ and Uf are two constants of integration. In the 

following we shall assume, without loss of generality, 
that W vanishes. 

By using (21) we can rewrite the first equation (17) 
in the form 

d2 

[ U 2 + 4 ^ o 2 ) ( ^ o 2 + / / , 2 ) ] = 0 
df2 

with the general solution 

Bf(Af+4Bf)+Cf 
-Wo2 

Bo2+f2 
(22) 

Here Ao—A (to) and C are two constants of integration. 
Finally we must check what restrictions, if any, 

Eq. (18) imposes. We substitute (15), (21), and (22) 
and find that Eq. (18) reduces to an algebraic condition 

4Bo2-Ao2=2<j>2 (23) 

relating various constants of integration. 
Equations (21) and (22) give the time dependence of 

A and B, the coefficients determining distances in the 
longitudinal and transverse directions. The result is 
consistent with the qualitative discussion in the 
Introduction. 

To compare with the Taub-NUT metric in the form of 
Newman et at.,5 let Bo=l and C=2m, and express Ao 
in terms of <j> and /: 

with 
<fc*= -j~2df2+ (2l)2fa2+ (t2+l2)(ax

2+ay
2) (24) 

y»= 
_ rm/"+/2-t02i 

L / / , 2+/2 J 
When <£T^0, /; can be computed from (12), (20), and 
(21) in terms of f \ 

dtr - 2 {Bo/B2)df = 2Bodf/ (B0
2+t//2) 

so that the electromagnetic fields (14) are given by 

£ = 2 < W 7 ( * / / 2 + £ o 2 ) 2 

i J=^(^o 2 ~/ / / 2 ) / ( / / / 2 +^o 2 ) 2 . 

IV. CONCLUSION 

(25) 

Many features of our metric (24) are similar to those 
of the Taub-NUT solution. For a finite range of time, 
during which / 2 < 0 , or ^42>0, i.e., 

- w - (tn2+l2-i<t>2)lf2<t< -m+ (fn2+l2-i<t>2)112, (26) 

it represents a closed universe with electromagnetic 
fields given by (25). For times outside this range (or for 
all f if 4(w2+/2)<</>2), f is a spacelike ("radial") co
ordinate and <rz is timelike. In this region the solution is 
related to the asymptotically fiat NUT space in some
what the same way as the Reissner-Nordstrom solution 
for a charged "particle" is related to the Schwarzschild 
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TABLE I. The different solutions contained in the metric given 
here as specializations. The arrows point in directions of increasing 
generalization. 

<£ = 0 <f>?*0 

I = 0 Schwarzschild —> Reissner-Nordstrom 
i i 

17* 0 Taub-NUT —> present paper 

solution (see Table I). In particular, when Z=0(=I?o), 
Eq. (25) shows that E vanishes. Our solution then goes 
over into the Reissner-Nordstrom solution for a mag
netic pole. By a "duality rotation" the roles of the 
electric and magnetic fields can be interchanged to 
obtain the more familiar form of the Reissner-
Nordstrom solution, representing an electric charge. 

In the case BQJ^O ("charged NUT space") both E and 
H fields differ from zero, and no duality rotation can 
make the field purely electric or purely magnetic, since 
according to (25) the two fields vary differently with 
the "radial" coordinate L 

The time development of the solution in the region 
representing a closed universe is very similar to that of 
Taub's solution. If we choose c~2m=0 we obtain a 
time-symmetric solution; if we take Ao=Bo=^) the 
initial geometry is that of an (undistorted) 3-sphere, 
both homogeneous and isotropic, in which a preferred 
direction is found only in the electromagnetic fields. 
(This is the case referred to in the Introduction). All 
the solutions develop geometrical anisotropy (AT^B) 
in time. Equation (22) shows that A2 increases from 
zero to a maximum and decreases again to zero. The 
total space volume V=tfg

ll2d3x—tfAB2dzx, measured 
on the invariant varieties t=const (or T = const) shows 
a similar behavior: the universe expands and re-
contracts like the familiar Friedman models. However, 
neither the Taub-NUT solution nor the present generali
zation shows any geometrical singularities on the time

like surface on which A = f~ F=0, which separates the 
closed universe and the outer, asymptotically flat 
region.12 To show this, note that all the terms in (19) 
are finite on this surface, in particular 

A/A=(l/2Bo)dA/dt"<oo. 

The analytic continuat^pn of the Taub-NUT metric 
across this surface has been discussed by Misner and 
Taub13 and these results apply also to the present 
solution. Although no singularity exists in four-space, 
every spacelike hypersurface which is pushed forward 
beyond the region represented by (26) does become 
singular.6 

Another generalization of Taub's solution, to the 
case of dust-filled universes, has been treated via nu
merical integration by C. Behr.4 Whereas the solutions 
presented here may be said to correspond to universes 
of various ratios of electromagnetic to gravitational 
radiation content, Behr's solutions correspond to 
various ratios of dust to gravitational radiation content. 
All the latter solutions show geometric singularities, 
since particle paths must cross in a finite proper time,14 

leading to infinite mass-energy density, Too- Thus 
Taub's solution and its generalizations give us a con
tinuous family of solutions with the Friedmann universe 
as one limit and the Schwarzschild or Reissner-
Nordstrom solution as the other limit. 
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